Cache-aware response time analysis for real-time
tasks with fixed preemption points

Filip Markovié
Division of Computer Science and
Software Engineering (CSE)
Milardalen University
Visteras, Sweden
filip.markovic@mdh.se

Abstract—In real-time systems that employ preemptive
scheduling and cache architecture, it is essential to account as
precisely as possible for cache-related preemption delays in the
schedulability analysis, as an imprecise estimation may falsely
deem the system unschedulable. In the current state of the art
for preemptive scheduling of tasks with fixed preemption points,
the existing schedulability analysis considers overly pessimistic
estimation of cache-related preemption delay, which eventually
leads to overly pessimistic schedulability results. In this paper, we
propose a novel response time analysis for real-time tasks with
fixed preemption points, accounting for a more precise estimation
of cache-related preemption delays. The evaluation shows that the
proposed analysis significantly dominates the existing approach
by being able to always identify more schedulable tasksets.

Index Terms—Real-time Systems, Cache-related preemption
delay (CRPD), Fixed-Priority scheduling, Preemptive Scheduling,
Cache Memory

I. INTRODUCTION

For many years it has been debated whether the non-
preemptive real-time scheduling or the fully-preemptive real-
time scheduling offers better schedulability bound and, if so,
under which circumstances. Eventually, it was shown by Yao
et al. [1]], and Butazzo et al. [2] that Limited-Preemptive
Scheduling (LPS) can provide even better schedulability results
than the two since it can combine and mimic both of the
scheduling paradigms.

Under the LPS paradigm, several approaches emerged, such
as Deferred Preemption Scheduling (LP- DPS) proposed by
Sanjoy Baruah [3]], Preemption Thresholds Scheduling (LP-
PTS) proposed by Wang and Saksena [4], and Fixed Preemption
Points (LP-FPP) Scheduling, proposed by Alan Burns [5].
Among all of them, it has been shown by Yao et al. [1], and
Butazzo et al. [2] that LP-FPP allows for the most precise
estimation of the taskset schedulability since the possibly
preempted points of a task are limited and known in advance,
prior the system’s runtime.

It is shown by Pellizoni et al. [6]] that preemptions can
introduce a significant preemption related delay in preemptive
real-time systems, even up to 33% of the task’s worst-case
execution time. Also, it is shown by Bastoni et al. [7] that in
real-time systems which employ a cache-based architecture,
cache-related preemption delay (CRPD) is the major part of the

Jan Carlson
Division of Computer Science and
Software Engineering (CSE)
Milardalen University
Visteras, Sweden
jan.carlson@mdh.se

Radu Dobrin
Division of Computer Science and
Software Engineering (CSE)
Milardalen University

Visteras, Sweden
radu.dobrin@mdh.se

preemption related delay. Those are a few reasons why it can be
important to limit the number of preemptions, which is possible
by using LP-FPP scheduling, and why such systems may benefit
from a precise CRPD estimation since the preemption still may
occur and a pessimistic estimation may deem a schedulable
taskset being unschedulable.

The existing work on cache-related preemption estimation,
integrated with the schedulability analysis, has, so far, consid-
ered only fully-preemptive real-time systems, and has been
shown by Altmeyer et al. [8], [9] to be highly beneficial in
determining the schedulability of real-time systems. However,
concerning the LP-FPP scheduling, the existing feasibility
analysis proposed by Yao et al. [10]], [11] accounts for overly
pessimistic estimation of preemption related delay, without
seizing many of the properties of the LP-FPP task model
which facilitate the CRPD estimation of a task.

In this paper, we propose a novel cache-aware response time
analysis for sporadic fixed-priority real-time tasks with fixed
preemption points and sequential non-preemptive regions. We
first identify reloadable cache blocks, by defining the maximum
number of times each memory cache block can be reloaded
upon all possible preemptions, which is an improvement
compared to the existing methods. Secondly, we define the
CRPD bounds accounting for the individual preemptions on the
non-preemptive regions, finally combining the two approaches
in order to define a safely upper-bounded CRPD estimation
which is integrated into the schedulability analysis. Also, we
identify and propose a computation of the maximum time
interval during which any of the released preempting jobs
may affect the CRPD of a task. Evaluation results show
that the proposed analysis outperforms the existing feasibility
analysis for the LP-FPP task model in all of the evaluated
cases, regardless of the variation in different task and cache
parameters.

In the remainder of the paper, we first define the system
model in Section [l In Section [l we discuss the related
work and describe the existing feasibility analysis for LP-FPP
scheduling. The proposed response time analysis is motivated
in Section [TV] and defined in Section [V} which is followed by
the evaluation results, shown in Section The conclusions
are discussed in Section [VIIl

II. SYSTEM MODEL AND NOTATION

In this paper, we consider a sporadic task model, under a
preemptive scheduler. In more detail, a taskset I" consists of n
tasks with preassigned fixed and disjunct priorities, where each
task 7; generates an infinite number of jobs, characterised by
the following tuple of parameters: (P;, C;, T;, D;). For a task
7; (1 <9 < n), its priority is denoted with P;, its worst-case
execution time (WCET) without considering for preemptions
is denoted with C;. The minimum inter-arrival time between
the consecutive task jobs is 7;, and the relative deadline is
denoted with D,. The assumed deadlines are constrained, i.e.
D; <T;. A j-th job of 7; is denoted with 7; ;.

We also consider that a task consists of a sequence of /; non-
preemptive regions (NPR), separated by /;—1 preemption points
(see Fig. [I). Non-preemptive regions are also called runnables
in some real-time system domains, e.g. the automotive industry
(12], [13]], [14]. The k-th NPR of 7; is denoted with §; s,
(1 <k <1;), and its worst-case execution time, assuming no
preemptions during the execution of d; 1, ..., d; x—1, is denoted
with ¢; . Thus C; can be expressed as ZZ’:l i.k> and the
worst-case execution time of the first [; — 1 NPRS is denoted
with E; and is equal to E; = 22:11 @i x- The k-th preemption
point of 7; is denoted with PP; ;.

‘L'.
l i 81z s
di1 qi2 qi3
Ci

Fig. 1: Task model

In this paper, we consider single-core systems with single-
level direct-mapped cache, while in Section we enlist
the adjustments for using the proposed method in case of
LRU set-associative caches. For each NPR, we assume that
the information about all the cache-sets whose blocks may be
accessed throughout the execution of the NPR is derived. In
this paper, we formally represent cache-sets as integers.

Formally, for each non-preemptive region d; ;, we define:

o aset of evicting cache blocks ECB; j, such that a cache-set
s is in ECB;, if 7; may access cache block in cache-set
s throughout the execution of §; .

For each preemption point PP;; we define a notion of a
useful memory block, building on the formulation originaly
proposed by Lee et al. [15]], and later superseded by Altmeyer
et al. [16].

© A memory block m is useful at PP; ; if and only if:

a) m must be cached at program point PP; ;, and

b) m may be reused on at least one control flow path
starting from PP; ;. without self-eviction of m before
the reuse.

Then, we define a set UCB; ; of useful cache blocks at
PP, such that a cache-set s is in UCB; j, if 7; has a useful
cache block in cache-set s at PP, ;.

For each task 7; we define a set FCB; of evicting cache
blocks such that ECB; = J\'_, ECB, .

We consider that a cache-related preemption delay is
computed as the upper bound on number of cache block reloads,
multiplied by a constant BRT', which is the longest time needed
for a single memory block to be reloaded into cache memory,
i.e. memory block reload time.

In the paper we also use the following notations:

o hp(i) : the set of tasks with priority higher than P;.

o hpe(i) : hp(i) U .

o Ip(i) : the set of tasks with priority lower than P;.

Regarding the mathematical notations, in some cases, we
use standard integer sets to denote cache block sets, but we
also use multisets. A multiset is a set modification that can
consist of multiple instances of the same element, unlike a set
where only one instance of an element can be present. For this
reason, besides the standard set operations such as set union
(U), and set intersection (M), we also use the multiset union
(W). The result of the multiset union over two multisets is a
multiset that consists of the summed number of instances of
each element that is present in either of the unified multisets.

III. RELATED WORK

The majority of the cache-aware schedulability analyses
are proposed in the context of fully-preemptive scheduling.
Among those, the current state of the art schedulability analyses
are: ECB-Union Multiset, and UCB-Union Multiset, proposed
by Altmeyer et al. [8]. Multiset approaches account for a
more precise estimation of the nested preemptions than the
prior proposed analyses. Prior to the multiset approaches, the
two most precise approaches were: UCB-Union, proposed
by Tan and Mooney [17], and ECB-Union, proposed by
Altmeyer et al. [18]. The union approaches considered for
the first time that CRPD can be computed by intersecting the
evicting cache blocks and useful cache blocks when considering
task interactions, using however different principles. The very
first ECB-based analyses were proposed by Tomiyama et al.
[19], and Busquets-Mataix et al. [20]. In these works, it was
considered that the upper bound on CRPD can be derived by
computing the maximum number of ECBs. Contrary to this,
the very first UCB-based analysis was proposed by Lee et al.
[[15]], and it considered that the upper bound can be derived by
computing the maximum number of UCBs. Ramaprasad and
Mueller [21] accounted for the CRPD bounds by investigating
the feasible preemption points and preemption patterns in fully-
preemptive periodic tasks, and also in periodic tasks with a
single NPR [22]]. In contrast, in this work, we account for
sporadic tasks, self-pushing phenomenon [23]], and multiple
possible NPRs, for which the above analyses are not applicable.

Considering the feasibility analysis of tasks with fixed
preemptions, the seminal and the most relevant work for this
paper was proposed by Yao et al. [10]], [L1] and this feasibility
analysis is formally described at the end of this section. Prior
to this work, a very important contribution was made by Bril et
al. [23] who for the first time identified the scheduling anomaly
known as self-pushing phenomenon (also described later).

The benefits of using a fixed preemption model is described
by Butazzo et al. [2], among which are the increased timing
predictability and the facilitation of the mutual exclusion
problems. Butazzo et al. [2] and Yao et al. [[1]] showed that
LP-FPPS can in the majority of the cases outperform many of
the existing scheduling algorithms. Becker et al. [13] showed
the benefits of limited-preemptiveness in automotive systems.

Other works in the area of fixed preemptions based task
models included the preemption point selection algorithms,
proposed by Bertogna et al. [24], Peng et al. [25], and Cavicchio
et al. [26]. Cavicchio et al. [26]] identified for the first time that
a detailed view on CRPD is important for the tasks with fixed
preemption points, especially a possibility of cache block to
be reloaded. Also, in our previous work [27]], [28] considering
the tasks with fixed preemptions, we proposed the constraint
satisfaction model for analysing CRPD at a task level. However,
the existing feasibility analysis proposed by Yao et al. [10], [11]]
accounts for the overly pessimistic preemption delay estimation,
without seizing many of the properties of the LP-FPP task
model which may facilitate the CRPD estimation of a task.

In this paper, we propose a novel cache-aware schedulability
analysis for fixed-priority preemptive scheduling for sporadic
tasks with fixed preemption points. In the following subsection,
we first describe the existing feasibility methods.

A. Overview of the feasibility analysis for tasks with non-
preemptive regions

The seminal feasibility analysis for tasks with fixed preemp-
tion points was proposed by Yao et al. [[10], [11], and here we
briefly describe their work using Butazzo’s formulations [29]].

1) Self-Pushing phenomenon: A self-pushing phenomenon
is a scheduling anomaly which may occur in scheduling tasks
with non-preemptive regions, identified and proved by Bril et
al. [23]]. It states that the worst-case response time of a task
does not necessarily occur in the first job after the critical
instant, but it may occur in one of the succeeding jobs, during
the Level-i active period. As proposed by Bril et al. [30]:

Definition 1: A Level-i pending workload at time point ¢
is the amount of unfinished execution of jobs with a priority
higher than or equal to P;, released strictly before ¢.

Definition 2: A Level-i active period is an interval [a, b] such
that Level-i pending workload is positive for all ¢ € (a,b) and
zero in @ and .

Theorem 1: A maximum response time of task 7; under
sporadic LP-FPPS is assumed in a level-i active period
that is started when 7; has a simultaneous release with all
higher priority tasks, and a subjob that produces maximum
lower priority blocking starts an infinitesimal time before the
simultaneous release. (proved and proposed by Bril et al. [30]])

2) Feasibility analysis: For a single job 7; ; of 7;, feasibility
analysis is divided into two parts. First, it is necessary to
compute the latest start time S; ; of the last non-preemptive
region. Then, the latest finish time F; ; of a job is computed.
This is performed in two steps because a task can experience
the interference from the higher priority tasks prior to the last
NPR. But, when the last NPR starts to execute, it cannot be

further interfered. The latest start time S; ; of the last NPR of
Ti,; 1s equal to the least fixed point of the following equation:

SZ‘(S') =bi+Ci—qiu,+ », Ca

V1 Ehp(7)
) : s
S =bi+ixCi—qi+ Y | 1) xCn
V11, €hp(7) h

where b; denotes the maximum lower priority blocking that
can be imposed on 7;. The latest finish time Fj ; of the j-th
job is computed with the following equation F; ; = S; ; +qi 1,
i.e. by adding the latest start time of the j-th job’s last NPR
and the worst-case execution time ¢; ;, of the NPR §; ;,.

The worst-case response time R; is finally defined as the
maximum latest finish time of all jobs released during the
Level-i active period.

Furthermore, Yao et al. [[11]] proved that the analysis can be
simplified to the first job of each task, if for each task D; < T;,
and if the taskset is feasible under fully-preemptive scheduling.

B. Limitations of the existing approach

Considering the preemption related overhead, Yao et al.
[11]] proposed that all C; values should be updated with the
following equation: C; = C/"" + (I; — 1) x ¢;, where C"” is the
worst-case execution time without considering preemptions, and
€; is the largest possible preemption cost that 7; can experience
at one of its preemption points. This can be a significant over-
approximation because:

¢ the analysis omits the fact that CRPD of a task 7; can be
caused only upon the execution start of the first NPR §; 1,
until the latest start time of the last NPR 6, ;.

¢ the analysis does not account for the case where a
preempting task 7, can preempt only a limited number
of preemption points of a preempted task 7;. Instead, it
implicitly assumes that each preempting task can preempt
7; at all of its preemption points.

o the analysis does not account for the case that between
the two accesses of a memory block, it can be reloaded
at most once due to preemption.

Therefore, in the following section, we provide motivating
examples for the novel method and then we define a response
time analysis with a more precise CRPD estimation.

IV. MOTIVATING EXAMPLES

In this section, we present two motivating examples. In Fig.
E], we show a high-level scheduling perspective of a job 7; ;
with three preemption points (PP; 1, PP; 2, and PP; 3). Also,
we show three preempting jobs of 75, such that P, > P;.

In Fig. 2] it is shown that immediately after the NPR, with
the maximum blocking b; on 7; ;, starts to execute, 7; and 7,
are released. Further, we distinguish among three important
time intervals. With S; ; we denote the latest start time of the
last NPR of 7; ;, and with F; ; we denote its latest finish time.
However, notice that we also denote I;, which is the maximum
duration from the start time of the first NPR of 7; ; until the
start time of the last NPR of 7; ;. Therefore, this interval also

Thj I Thj+1 I Thj+2 I Thj+3
PP; 4 PP;,
s Y [/
4
I;
b; “ :
i) Si'
H J
- [/ Delay due toa
0 ¥l cache reload
, Fij

Fig. 2: Example of different time intervals used in the analysis.

represents the maximum time interval during which higher
priority jobs can affect CRPD of 7; ; due to preemptions. Note
that the latest start time S; ; of the last NPR includes lower
priority blocking (b; time units long), and possibly some higher
priority interference prior to the start time of 7; ;. During those
two events, 7; ; cannot be preempted nor can its CRPD be
affected. Therefore, I; can be less than S; ; and F; ; and its
precise estimation is important since by an over-approximation
of I; it is possible to account for the CRPD impact from
multiple preemptions which in reality cannot occur.

parameters | cache usage
BRT=1|| T, =22 ECB;, = {1,2,3,4}
Dy =22
Alelololo
C, =4
T, =32 ECB, = {1,3,4}
PPy, PP,, PPy D, =32 ECB,, = {1,3}
C,=7 ECB,, = {1,3,4}
ECB,3; = {4}
L(OE|OO® |[®® ECBo — (4)
4 UCB,, = {1,3}
! C,—qpa=6 1q2a=1 UCB,, = {4}
' UCB,3 = {4}
T3 = 40 ECB3, ={1,2}
PP;, PP3, PP. 3 31
31 .32 33 Dy = 40 ECBs;, = {3}
C;=8 ECBy; = {4}
T 3 3.3
3 @ @ @ @ @ @ @ @ ECB,, = {1,234}
| UCB3, = {1,2}
: C3—qza=4 i q34 =4 H UCB;, = {1,2,3}
T 1 UCB;3 = {1,2,3,4}

Fig. 3: Running taskset example.

In Fig. 3] we show a low-level perspective of the tasks,
with associated task and cache usage parameters. The accessed
cache-sets are depicted as circled integers in the NPRs where
they are accessed. For example, task 7y accesses cache blocks
in cache-sets 1,2,3, and 4. Considering task 73, in its first
NPR it accesses cache blocks in cache sets 1 and 2, and
so on. Therefore, a set of useful cache blocks at PPz is
UCB3’1 = {1,2}, while at PP3’2 is UCB&Q = {172,3}, and
at PP3 3 itis UCB3 3 = {1,2,3,4}.

To motivate the necessity for the analysis on this level,
assume that 7 preempts 73 at all of its three preemption points.
Let us now focus on cache-set 1. Although it is considered
that there might be a UCB residing in cache-set 1 at each of
the three preempting points, this cache block can be reloaded
at most once due to preemption. This reload can only occur

within the last NPR of 73 since only in the last NPR it is
re-accessed. To consider the worst-case eviction at each of
those three points in isolation, as in method proposed by Yao
et al.[11], can introduce over-approximation, accounting for 3
block reloads in cache set 1, opposed to at most one possible
reload. Next to this, we also consider several more properties
of task interactions on the cache level which are defined and
formalised in the following analysis.

V. CACHE-AWARE RESPONSE TIME ANALYSIS

Considering the computation of the response time R; of
7;, the proposed analysis accounts for the following main
computations (see Fig. [2):

1) b; — Computation of the maximum lower-priority blocking

on 7;, accounting for the CRPD in the blocking.

2) I; — Computation of the maximum time duration from the
start time of §; ; until the start time of d;;,. I; represents
the upper bound on the interval during which higher
priority jobs can affect CRPD of 7; ; due to preemptions
(see Fig. [2).

3) Si,; — Computation of the latest start time of the last NPR
of 7;; accounting for the CRPD on all jobs with higher
priority than 7; which can be released within \S; ;, and
accounting for the CRPD on j — 1 jobs of 7;. The CRPD
of ; ; should only include the CRPD in first [; —1 NPRs,
since in the last NPR cache block reloads occur after S; ;,
during the execution of J;;,. (see Fig.

4) F;; — Computation of the latest finish time of the j-th
job of 7;, where the worst-case execution time of the last
NPR §; , of 7; is included, with the CRPD which can be
caused during the execution of &; ;,.

In the remainder of this section, we formally define the
terms for computing the response time of a task, divided
into three subsections: 1) Maximum lower priority blocking,
2) CRPD computations, and 3) Latest start time, finish time,
and response time. In order to ease the understanding of the
following equations, the motivating example from Fig. [3] will
also serve as the running example.

A. Maximum lower priority blocking

We start by defining the longest worst-case execution time
of a NPR in 7; including the time the NPR may be prolonged
due to the CRPD.

Definition 3: The longest worst-case execution time ¢}"**,
accounting for CRPD, of a non-preemptive region in 7; is
defined as follows:

¢/ = max

(qi,k + ‘ UCB;r-1NECB; ;N
ke(1,l;] ’

n U ECBh‘ X BRT), where UCB; o = 0
V7 €hp(i)

(D

Proposition 1: ¢"* is an upper bound on the longest worst-
case execution time, accounting for CRPD, of a non-preemptive

region in ;.

Proof: The CRPD of a non-preemptive region d; j cannot
be higher than BRT multiplied by the number of cache blocks
such that: 1) the block can be evicted by some task with higher
priority than 7; at PP;;_;, and 2) due to preemption, the
block can be reloaded in 6; j, i.e. can be accessed in ¢; 5, and
is useful at PP; ;_;. This is accounted in Equation E] by the
set intersections between UCB,; 1, ECB; j, and the union
of all evicting cache blocks from the tasks with higher priority
than 7;. Since the equation computes the maximum sum of the
WCET and the CRPD upper bound, from all NPRs in 7;, then
the proposition holds.]
Example: Given the task 73 from Fig. [3| ¢5*** = 8, since the
NPR 63 4 has the non-preemptive WCET equal to 4, and all of
its 4 useful cache blocks might be reloaded during its execution
due to preemption at PP3 3.

Given the ¢]"* term, we now define the maximum lower
priority blocking that may block the start time of an instance
of 7;. Informally, it is the longest worst-case execution time of
a NPR belonging to the one of the tasks with a lower priority
than 7;.

Definition 4: Maximum lower priority blocking b; which
may delay the start time of an instance of 7; is equal to:

bi = 2)

max (q

max)
T1Elp(7)

Example: Given the task 7y, its maximum lower priority
blocking is equal to 8, since the NPR d3 4 has the largest
WCET value accounting for possible CRPD, among all the
other NPRs of 75 and 73.

B. CRPD related computations

This subsection is divided into four main parts:

1) Reloadable cache blocks — where a modification on the
term of useful cache blocks in tasks with NPRs is defined.

2) CRPD of a single job of T; during the time interval t —
Where the computations for the upper bound on CRPD
of a single job during the time interval ¢ are defined.

3) CRPD of all jobs of T; released during the time interval t
— Where the computations for the upper bound on CRPD
for all jobs of a task that can be released during the time
interval ¢ are defined.

4) Maximum time interval I; — Where the computations for
the maximum time duration from the start time of §; ;
until the start time of §;;, is defined.

1) Reloadable cache blocks:

In this part we first define an upper bound on the number
of times a cache memory block m can be reloaded during
the execution of a task. We exploit the fact that although a
single cache block m may be useful and evicted at several
consecutive preemption points, it does not necessarily mean
that it can be reloaded as many times as it is useful. We prove
that between the two consecutive accesses of m in 7;, there is
at most one cache block reload caused by preemptions between
the accesses.

Lemma 1: If a memory block m is not accessed in a NPR
0k, then it cannot be reloaded in 9; j.

Proof: A cache block reload of m in §;; implies that it
must be accessed during the execution of J; 5, without being
present in the cache memory, which concludes the proof. MW

Lemma 2: A memory block m can be reloaded at most once
in §; ;, due to preemption.

Proof: (By contradiction) Let us assume that due to
preemption m can be reloaded more than once in §; ;. During
the execution of §; ;, the first access request for the memory
block m can result in a reload due to preemption and eviction
of m prior the execution of ¢; . However, the next reload due
to preemption within the same region implies that ¢, ;, was
preempted. This is a contradiction since &; ;, is non-preemptive.

|
Note that m can be self-evicted during the execution of
0;,; and afterwards again reloaded in the same NPR which is
accounted for by the worst-case execution time of the region.
However, the source of such reload is not a preemption.
Proposition 2: If a memory block m is accessed in a NPR
di.%» then due to preemptions it can be reloaded at most once
from PP; j, until the end of the first following NPR J; ; where
it is accessed.

Proof: (By contradiction) Let us assume that m is accessed
in §; 1, and due to preemption m can be reloaded more than
once from PP; j, until the end of §; ;. This implies two possible
cases: 1) m is reloaded in a NPR between d; ;, and J; ; where
it is not accessed, which contradicts Lemma or 2) due
to preemptions, m is reloaded more than once in §;; which
contradicts Lemma [|

Given the Proposition 2] in order to compute the upper
bound on reloads of m during the execution of first x NPRs
of 7;, we can compute the number of first z NPRs for which
m is in the ECB set of a NPR and in the UCB set of the first
succeeding preemption point.

Definition 5: The upper bound ubzlm on reloads of a memory
block m during execution of the first z NPRs of 7; is equal to:

ubi”, = {k | (1 <k <z <1l;) Am € ECB; N UCB] }|,
where UC B/}, is a set of cache blocks that must be cached

at PP, }, and may be reused until the end of the x-th NPR
3)
Proposition 3: ub], is an upper bound on the number of
cache block reloads of m during the execution of the first x
NPRs of a single job of ;.

Proof: By Proposition [2] it holds that m can be reloaded
at most once between the two succeeding accesses of m in
two different NPRs, ¢; 5, and d; ;. Also, it holds that between
di,5 and d; ;, there is exactly one preemption point for which
m € UC’B‘Z“;,c Am € ECB;, and it is the first preemption
point succeeding §; . Then, by counting the number of non-
preemptive regions ¢, , (1 < k < z) for which m € ECB; ;U
UCB;}, is a safe upper bound on the number of reloads of m
during the first z NPRS of 7;, which is accounted by ub;”w

|

Example: Given the task 75 from Fig. [3] the upper bound on
the number of reloads ub§)4 of a memory block 1 during the
execution of the entire task is ubé’ 4 = 1. Notice that memory
block 1 is useful at all three preemption points and can be
evicted upon preemption on any of them, however it can be
reloaded at most once. Next, we define:

Definition 6: A multiset RCB; ,;, where each memory block
is present the maximum number of times it can be reloaded
during the execution of the first x NPRs of a single job of 7;:

(¢ m) @

m
“bi,m

RCB;, = 4
vVmeECB;

Proposition 4: RCB; , is a multiset of all possible reloadable
cache blocks during the execution of the first x NPRs of a
single job of 7;.

Proof: Since each accessed block m (given by m € ECB;)
is included ub% times in the multiset, then by Proposition
all the possible reloads for each memory block during the
execution of the first z NPRs of a job of 7; are accounted.

|

Example: Given the task 75 from Fig. E], the RCB3 4 multiset
is equal to {1,2,3,4}, and RCBj3 3 = (). Notice that memory
blocks 1,2,3 and 4 are not present in RCB3 3 because their
reloads cannot occur during the execution of the first 3 regions
of 3. For 79, RCBQA = {1, 3,4, 4}

2) CRPD of a single job of T; within the time interval t:

For the upper bound on CRPD caused on a job of 7; during
the time interval ¢, we define two complementary types of
CRPD computations. In the analysis, we compute CRPD with
both approaches, and later use the lower value as the final
upper bound. The proposed concepts are:

o RCB-based upper bound (V) — which considers that
all higher priority jobs, releasable during ¢, can preempt a
job 7; ; at all preemption points. In this case, we consider
that each reloadable cache block is reloaded during the
execution of a job if it can be evicted by some higher
priority job released during t.

o Preemption-based upper bound (1) — which considers
that a preemption, from a single higher priority job 7y, ;
can evict and cause a reload only for the useful cache

blocks of the point at 7; ; where the preemption occurred.

In this case, for each preempting task 75, whose jobs
can be released j times during ¢ interval, we account
for 7 highest CRPD values resulting from individual
preemptions of those jobs on preemption points of 7; ;.

To give an informal example of the two CRPD computations,
let us assume that given the taskset from Fig. |3| we compute
the upper bound on CRPD caused on a single job of 75 during
a 24 units long time interval. During the interval of 24 units,
at most two jobs of 7; can be released, and at most one job
of 75 can be released.

For the RCB-based method it does not matter how we
allocate preemptions of these jobs on preemption points, we
care only about what are possibly evicting cache blocks

in two jobs from 7; and one job from 73, and those are
{1,1,1,2,2,3,3,3,4,4,4}. Also, we consider what cache
blocks can be reloaded upon those evictions in single job
of 73, and those are RCB3 4 = {1,2,3,4}. For each cache
block, present in both — the RCB- and the evicting cache blocks
multisets, we account that it is evicted and reloaded, meaning
that CRPD at the end considers four cache block reloads.

For the preemption-based method the allocation of pre-
emptions on preemption points of a task is important. First,
we consider two preempting jobs of 7; and their two possible
preemptions on a job of 73. In this case, the maximum CRPD
from two preemptions is caused on PP3 and PP, causing
a number of reloads equal to 4 (due to evictions and reloads
of blocks in UCBj3 3), and 3 (due to evictions and reloads of
blocks in UCB3 2). For the preemption from a job of 79, the
maximum CRPD occurs when PPj3 is preempted, since useful
cache blocks 1,2, and 3 can be evicted, and CRPD accounts for
3 cache block reloads. In total, 7+ 3 = 10 cache block reloads
are accounted for, which is the less precise upper bound than
the one derived with the RCB-based method.

However, in some cases, e.g., computing CRPD for a single
job of 7o, the preemption-based method provides a better result.
In this case, the RCB-based method would account for 3
cache block reloads from a single job of 7. However, the
preemption-based method computes a tighter upper bound on
CRPD accounting for one preemption from 7 on PP5 ;. This
is the case that produces the maximum CRPD, equal to two
cache block reloads of memory blocks 1, and 3. For a single
preemption at any other point, the CRPD is equal to one.

It is important to mention that in this paper, for a single job
of any task, we are interested in the CRPD that can be caused:
¢ during the execution of the first /; — 1 NPRs of a job.

¢ during the execution of all NPRs of a job.

This is important because when considering the time intervals
(see Fig for the job 7; ; itself, we should only consider CRPD
caused during the first [; — 1 of its NPRs. This is because in
I; and §; ; intervals, we do not consider the CRPD of the last
NPR of the job. But, when considering how this job affects
other jobs, we must consider CRPD in all of its NPRs.

For these reasons, many equations in this paper consider the
CRPD caused during the execution of the first NPRs of a
job, where z is the provided parameter. We distinguish among:

o %LL,J: for RCB-based CRPD computations, and

o ~F: for preemption-based CRPD computations.

Based on whether or not the last NPR should be included,
as discussed above, x can be assigned the value /; — 1 or [;,
respectively.

We first define the upper bound on CRPD for a single job
within a time interval ¢ using RCB-based computation:

Definition 7: The upper bound ~;”, () on the CRPD caused
on the first x NPRs of a single job of 7; by all preempting
jobs which can be released within time a interval ¢ is defined
by the following equation:

Ve(t) = |RCBi .0 4
V7 Ehp(7)

() ECB))
[t/T]

The equation accounts for the maximum number [¢/T}] of
releases of jobs of each higher priority task 7, during ¢, and
includes all of their evicting cache blocks as many times as
they can be released.

Proposition 5: ~y;”,(t) is an upper bound on the CRPD caused
on the first x NPRs of a single job of 7; during the interval t.

Proof: By Proposition 4, all possibly reloadable cache
blocks in a single job of 7; during the execution of the first
NPRs are given by RCB; ... By the multiset union, Equation [3]
accounts for the maximum number of possibly evicting cache
blocks of all jobs with higher priority than 7; that can be
released during ¢. Since by the multiset intersection Equation
E] accounts that every reloadable cache block from RCB; ,
indeed results in a reload if there is at least one evicting block
from all possibly preempting jobs released during ¢, then v,UT(t)
is an upper bound on CRPD caused on the first z NPRs of a
single job of 7; during t.]

Example: Given all the NPRs of a task 73 (see Fig.[3) the
upper bound on their CRPD during the 24 units long time
interval is equal to:

19,20 = [{1,2,3,400 (| {1,234} w | {1,2.3})]
[35] [
- ’{1, 2,3,4}n ({1,1,1,2,2,2,3,3,3,4, 4})‘ _4

Before defining the preemption-based CRPD upper bound, we

first define a multiset which consists of all possible CRPD

values that jobs of 7, can cause on the first z NPRs of ;.
Definition 8: A multiset CRPDﬁ_t of all upper bounded

CRPDs that can be caused by a job of 73, on each of the first
x NPRs of a single job of 7; is equal to:

CRPD}, = |4 {|ECB, N UCB; 1| x BRT}
k=1
where UCB; o =

(6)

Proposition 6: CRPDZQE is a multiset of upper bounds of
the CRPD that can be caused by a job of 7, on the first x
NPRs of a single job of ;.

Proof: A CRPD upper bound on a single NPR 6, j, is
computed by accounting that all useful cache blocks at the
preemption point directly preceding J; , can be evicted by the
evicting cache blocks of 73,. Thus, CRPD on §; ;. is computed
as the intersection between the ECBj and UCB;j;_; sets.
Since Equation [6] combines the upper bounds from the x first
NPRs in a multiset, the proposition holds.]

Example: Given the taskset from Fig.|3| a multiset C’RPD%,, 4
of CRPDs from a job of 7, caused on first 4 NPRs of 73 is:

CRPDY 4 = {|0], [{1,2}],|{1,2,3}|, [{1.2,3,4}|} = {0,2,3,4}

Considering the cumulative CRPD caused by preemptions
from jobs of 73, during a time interval ¢ we define the term:

Definition 9: The upper bound v/ (t) on CRPD caused by
preemptions from jobs of 75, on the first NPRs of a single

job of 7;, within the time interval ¢, is defined in the following
equation:

S>> CRPD!, o < [t)Th)
YL (t) =4 max ({3 cle € CRPD!, A . 7
’ ’ , otherwise
lel = [t/Th})

Equation [/| computes the maximum cumulative CRPD from
a maximum number of preemptions of jobs of 75, on the first
x NPRs of an instance of 7;. Equation [/| considers two cases:

Case 1: (z < [TLJ), the number of preempting jobs of 7,
which can cause CRPD on first = regions of a single job of 7;
is greater than or equal to the number of preemption points
that can be preempted.

Lemma 3: %h,a; (t) is an upper bound on CRPD caused by
preemptions from jobs of 75, on the first x NPRs of a single
job of 7;, within the time interval ¢, in case x < [£-].

Th
Proof: When x < [Ti] Equation sums all the CRPD

h

values in the multiset CRPD?’ »» and since by Proposition |§I,
CRPDZ » 18 a multiset of upper bounds of the CRPD that can
be caused by a job of 7, on the first x NPRs of a single job
of 7;, then the lemma holds. |

Example for x < [Tih] Given the taskset from Fig. 3| the
upper bound on CRPD caused by preemptions from jobs of
71 on all NPRs of a single job of 75 during 100 time units is
equal to 74 ,(100) = 9 although jobs of 71 can be released 5
times during 100 time units, given by [100/7}] = [100/22].
This is the case because only three preemption points can be
preempted, and each of those preemptions individually cause
maximum CRPD of 2,3, and 4 cache block reloads respectively.

Case 2: ([Tih] < z), the number of jobs which can cause
CRPD on the first = regions of a single instance of 7; is less
than the number of preemption points of 7;.

Lemma 4: fy{fx (t) is an upper bound on CRPD caused by
preemptions from jobs of 75, on the first x NPRs of a single
job of 7;, within the time interval ¢, in case z > f%]

Proof: By Proposition @ CRPD?@ is a multiset of upper
bounds of the CRPD that can be caused by a job of 7, on the
first z NPRs of a single job of 7;. Since (%] is the maximum
number of preemptions from the jobs of 73 during ¢, then only
[Tiﬂ number of NPRs can experience CRPD caused by jobs

of 73,. Since Equation [7] sums the -] highest values from

Th
CRPDZI multiset, then the lemma holds. |
Example for [7-] < x: Given the taskset from Fig. 3} the

upper bound on CRPD caused by preemptions from jobs of 73
on all NPRs of a single job of 73 during 20 time units is equal
to: 754(20) = 4. This is the case because only one job of 7;
can be released during 20 time units, given by {%W , meaning
that only one preemption point can be preempted. Therefore,
Equation [7| picks the single highest value in CRPD;;4 which
is 4 (representing the case when PPj3 3 is preempted).

Proposition 7: %hT (t) is an upper bound on CRPD caused
by preemptions from jobs of 7 on the first x NPRs of a single
job of 7;, within the time interval .

Proof: Follows directly from Lemma [3] and]

Now, we consider that all higher priority jobs may contribute
to the CRPD of a single job of 7; during the time interval .
Definition 10: The upper bound %‘T . (t) on CRPD caused by
preemptions of all higher priority jobs during the time interval
t on the first x NPRs of a single job of 7; is defined in the
following equation:
>

Viu(t) = Y (t)
V1r€hp(Ti)

®)

Proposition 8: fy;’ () is an upper bound on CRPD caused
by all higher priority jobs which can be released within time
interval ¢ on the first x NPRs of a single job of ;.

Proof: By Proposition [/] for a single higher priority task
Thy ¥, (t) is an upper bound on CRPD caused by all jobs of
75, on the first 2 NPRs of a single job of 7; within ¢. Since
Equation 8| sums %h,m (t) for each task with higher priority than
7;, the proposition holds.]
Example: Given the taskset from Fig. [3t 73, (24) = 73 ,(24) +
v34(24) = 7+ 3 = 10. This is the case because Equation
accounts for two preemptions from 7; resulting in adding
the two highest CRPD values (occurring at points PP3 3: four
reloads, and PPs3 5: three reloads), and one preemption from 7,
resulting in a single highest CRPD value (occurring at PP3 3:
three reloads).

Finally, we define the CRPD upper-bound using both — the
RCB-based and the preemption-based computations.

Definition 11: Combining the two proposed methods, a safe
upper bound +; () on CRPD caused on the first z NPRs
of a job of 7; during the time interval ¢ is derived with the
following equation:

Yo () = min (7, (1) , 1, () ©

Proposition 9: ; (t) is an upper bound on CRPD caused
on the first z NPRs of a job of 7; during the time interval ¢.
Proof: ; () is an upper bound because it takes the least

of two upper bounds, given by Propositions 5 and 8.]
Example: Given the taskset from Fig. [3] the final safe upper
bound is 3 4(24) = min('y§{4(24),’y;4(24)) = min(4, 10) =
4, meaning that the tighter upper bound is given by the RCB-
based method. However, in case of 75, the CRPD on a single
job within 100 time units is computed as follows: 72 4(10) =
min(v5 4(10),744(10)) = min(3,2) = 2, meaning that the
tighter upper bound is given by the preemption-based method.

3) CRPD on all jobs of T; released within time interval t:

Considering that I; is the maximum time interval during
which jobs with higher priority than 7; may affect the CRPD
of a single job of 7; (see Fig. 2), then the CRPD upper bound
of all jobs of 7; which can be released during the time interval
t, is defined as follows:

Definition 12: The upper bound ~;(¢) on the CRPD on all
the jobs of 7; that can be released during the time interval ¢ is
defined with the following equation:

(0 = | 7| %2

T (10)

Proposition 10: Assuming that I; is an upper bound on the
time duration from the start of the first NPR of 7; until the
start of the last NPR of 7;, then ~;(¢) is a CRPD upper bound
on all the jobs of 7; which can be released during t.

Proof: By Proposition [9and the assumption in Proposition
Equation derives the CRPD upper bound 7, ;, (I;) caused
during the I; interval on all NPRs of a single job of 7;. Since
for each job of 7;, that can be released within ¢, its CRPD
upper bound ~;(t) is multiplied by the maximum number of
releases, then v;(t) is a CRPD upper bound on all the jobs of
7; which can be released during ¢. []
Computation of I; is defined in Equation [T1]

4) Maximum time interval I;:

Next, we define the computation of the I; interval. In
Equation we consider the critical instant, i.e. that just
after the start of execution of ;7 all the higher priority jobs
may be released. It also considers the execution of a job of
7; until the start of its last NPR, accounting for the possible
CRPD during the execution of the first /; —1 NPRs. In each new
iteration, the Equation accounts that the computed interval can
be enlarged with the additional CRPD by the newly released
higher priority jobs with their respective CRPDs:

Definition 13: The upper bound I; of the time duration from
the start time of §; ; until the start time of d;, is defined as
the least fixed point of the following recursive equation:

1V = E
7 = Bt yig)+

= (] e i)

V7 €Ehp(i)
(11)

Proposition 11: I; is the upper bound of the time duration
from the start time of the first NPR of 7; until the start time
of the last NPR of 7; for any job of ;.

Proof: By induction over the tasks in I, in a decreasing
priority order.
Base case: I; = E1, because hp(m1) =) and v, ;,_1(¢t) =0
for any ¢ since 77 cannot experience CRPD. FE; is the upper
bound on the time duration from the start time of the first
NPR until the start time of the last NPR of 7; since it is the
worst-case execution time between those two points.
Inductive hypothesis: Assume that for all 73, in hp(i), I}, is an
upper bound on the time duration from the start of the first
NPR, until the start of the last NPR of 7.
Inductive step: We show that Equation [T1] computes the safe
upper bound I;. Consider the least fixed point of Equation [IT]
for which I; = I7 = I7~'. At this point, the equation accounts
for the following upper bounds and worst-case execution times:

o FE;, which is the worst-case execution time, assumed by
the system model, of the first /; — 1 NPRs.

o 7i1;,—1(1;), which is proved by Proposition 9 to be the
CRPD upper bound of a single job of 7; in the first [; — 1
NPRs during the time interval I;.

o EVThehp(i)(l.’JIT;J + 1) x C}, — Worst-case interference

caused by the execution of jobs of higher priority tasks. The
interference is accounted as the sum of individual WCET values
of each job with higher priority than 7;, that can be released
during I;. The maximum number of jobs, of a single higher
priority task 75, which can be released during I; is accounted
by term | 4= | 4 1.

o va Ehp(i)fyh(;) — CRPD upper bound on all jobs of
the higher priority tasks that can be released during t. By
Proposition m 10| and the inductive hypothesis, 7y, (I;) is an upper
bound on the CRPD of all jobs of 75, which can be released
within ;. Then, the sum of CRPD bounds 7,(;) for each
higher priority task than 7; is a safe upper bound on the
cumulative CRPD in all jobs with higher priority than 7,
released during I;.

Since we proved for all the factors, which can prolong the
time duration from the start time of the first NPR until the
finish time of the last NPR of ;, that they are accounted as
the respective upper bounds in Equation [I1] then their sum
results in an upper bound, which concludes the proof.]

Note that Equation uses Equation and vice versa.
However, Equation |1 1| is always computable, because in order
to compute I;, Equation computes 7y, (t) term only for
higher priority tasks than 7;, meaning that it computes -, (¢)
using only the values I; to I;_1. Since 7 (t) always evaluates
to zero for any value of ¢, because 7; cannot experience CRPD,
this implies that I can be computed using ~; (¢) = 0, which
implies that I3 can be computed using the previously computed
I, =0, and I, values, and so on until I;.

C. Latest start time, finish time, and response time

In this subsection, we define the equations for the latest start
time S; ; of the last NPR a job 7; ;, latest finish time Fj ;
of 7;, and the response time I; of a task 7;. All of those
equations include the computation of the CRPD values for
each job.

We first define the latest start time .S; ; computation, for the
last NPR of the j-th job of 7; after the critical instant.

Definition 14: The latest start time S; ; of the last NPR of
the j-th instance of 7; is equal to the least fixed point of the
following recursion:

bi + E;

bi+ (-1 xCi+7(([i—1) xT;)
+ E; +7i,-1(L) +

+ Y <({Sf;h”J +1) x Ch + (S 1))>

V7, €hp(i) (12)

In Equation|12| we consider the critical instant from Theorem
proved by Bril et al. [30].

Proposition 12: Assuming that the Level-i pending workload
is greater than zero at each time point from the critical instant
until j x T}, then starting from the critical instant, S; ; is the
upper bound on the latest start time of the last NPR of 7; ;.

Proof: Based on the proposition assumption on the Level-
i pending workload, the start time of 7;; is affected by

) _
s\ =
s =

all preceding 7 — 1 jobs. Consider the least fixed point of
Equation |12} for which S; ; = 57, = 5]~ i 1 At this point, the
equation accounts for the followmg upper bounds and worst-
case execution times:

¢ b; — By Proposition [I] and Definition [b; is an upper
bound on lower priority blocking on ;.

o (j—1) x C; — WCETs of the first j — 1 jobs of 7;, which
execute prior to 7; ;.

© v;((j —1) x T;) — By Proposition [10} it is an upper bound
on CRPD of the first j — 1 jobs of ;.

o E;, which is the worst-case execution time, assumed by
the system model, of the first /; — 1 NPRs.

¢ 7vi1,—1(I;) — By Propostion 9, it is an upper bound on
CRPD of a single job of 7; (in this case 7; ;) in the first [; — 1
NPRs during the tlme interval I;.

O D e hp(z)(L L]+ 1) x Cy — Worst-case interference
caused by the execution of jobs of higher priority tasks. The
interference is accounted as the sum of individual WCET values
of each job with higher priority than 7;, that can be released
during S; ;. The maximum number of jobs, of a single higher
priority task 75, which can be released during S; ; is accounted
by term LST]JJ + 1.

o vae;p(i) Y1 (Si,;) — CRPD upper bound on all jobs of
the higher priority tasks that can be released during S; ;. By
Proposition [10] 73S, ;) is an upper bound on the CRPD of
all jobs of 75, which can be released within S; ;. Then, the
sum of CRPD bounds 7 (.S; ;) for each higher priority task
than 7; is a safe upper bound on the cumulative CRPD in all
jobs with higher priority than 7;, released during S; ;.

Since Equation |12| sums and considers upper bounds on all
factors that can delay the start time of the last NPR of 7; ;,
the proposition holds. []

For the computation of F; ; (see Fig.[2) we need to consider
the worst-case execution time of the last NPR of 7; including
the upper bound on CRPD:

Definition 15: The worst-case execution time ¢%** of the
last NPR of 7, including the upper bound on CRPD during
its execution, is defined in the following equation:

¢l = gy, + |UCB i | EOBh‘ x BRT (13)
Vhehp(i)

Proposition 13: ¢;*** is an upper bound on the longest
execution time of the last NPR of 7;, including the upper
bound on CRPD during its execution.

Proof: The CRPD of a non-preemptive region d;;, can
not be higher than BRT multiplied by the number of cache
blocks such that: 1) the block is useful at the point preceding
di.1,, and 2) the block can be evicted by some task with higher
priority than 7; at PP;;,_;. This is accounted in Equation
by the set intersection between UCB;;,—1 and union of
ECBy, sets. Since the equation sums the WCET of §;;, and
its CRPD upper bound, then the proposition holds. []

Definition 16: The latest finish time F; ; of the j-th instance
of 7; is equal to:

last

’j — Sz] +qlaat (14)

Proposition 14: Assuming that the Level-i pending workload
is greater than zero at each time point from the critical instant
until j x T;, then starting from the critical instant, F; ; is the
upper bound on the latest finish time of the last NPR of 7; ;.

Proof: Follows from Propositions [I2] and [I3] [|

Now, we define the upper bound on the Level-i active period
accounting for the CRPD.

Definition 17: The level-i active period L;, accounting for
the CRPD on all jobs within the period, is defined as follows:

LY =b;+C;

L7 =bit 3 (LT + 1) x ()
V1), €Ehpe(i)
15)

Proposition 15: L; is an upper bound on Level-i period.

Proof: Similar to the proof for Proposition[12] Consider the
least fixed point of Equation for which L; = L] = L,f_l.
At this point, the equation accounts for the following upper
bounds and worst-case execution times:

¢ b; — By Proposition [and Definition [} b; is an upper
bound on lower priority blocking on 7;.

o vaehm(i)(t%J + 1) x C}, — The worst-case execution
time of all jobs of 7; and higher priority jobs than 7; which
can be released within L;. The maximum number of jobs, of
a single task 74 € hpe(i), which can be released during L; is
accounted by the following term L%J +1.

© X vroehpe(iy Ve(Lj) — CRPD upper bound on all jobs of
7; and higher priority jobs than 7; which can be released within
L;. Follows from Proposition [T0]

Since Equation |15 sums and considers upper bounds on all
factors that can extend the duration of the Level-i active period,
the proposition holds. [|

Finally, we can define the worst-case response time:

Definition 18: The worst case response time R; of 7; is
equal to the maximum relative latest finish time of a job 7; ;
which is released within L;.

max
JE[LTL: /T3]

Theorem 2: R, is the safe upper bound on the worst-case
response time of ;.

Proof: Since each respective F; ; value is computed within
L;, then the proposition assumption from Proposition [T4] holds.
Then, by Theorem [I| R; is the safe upper bound on the worst-
case response time of 7;, which concludes the proof.]

1) Schedulability analysis: Given the above-proposed re-
sponse time analysis, the taskset schedulability is determined
by computing whether for each task the derived response time
is less than or equal to the task deadline. L.e. if for any task
7; in I the inequation R; > D, holds, the taskset is deemed
unschedulable by the proposed analysis. As described before,
in Section the schedulability test can be simplified to
the first job of each task, as proposed by Yao et al. [[11]]. Also,
the proposed approach can be adopted in another simplified
schedulability test (see Theorem 3 from [11]]), which is based on
discontinuous points of cumulative execution-request functions,
proposed by Bini and Buttazzo [31]. In this case, the cumulative

{F,; —(—-1) xTi} (16)

10

execution request for 7; and all higher priority tasks can be
computed using the second line of Equation [l 1| by changing
(r=1) with t, where ¢t € (0, D; — ¢;°*"], while the

the term I, last
maximum blocking on 7; is computed using Equation [2}

K3

D. Set-associative LRU caches

As shown by Altmeyer et al. [8]], [9], in case of set-
associative LRU caches, a cache-set may contain several useful
cache blocks, e.g., UCBy 2 = {1,2,2,2}, meaning that at
PP, », task 7 contains three UCBs in cache-set 2, and one
UCB in cache set 1. When a preemption point is preempted,
one ECB of a preempting task is enough to evict all UCBs of
the same cache-set. Therefore, multiple accesses to the same set
by the preempting task do not need to appear in the ECB set,
which means that the ECB set can remain the same as in direct-
mapped caches. A bound on CRPD due to preemption from
Tp, on PP, can be defined with: UCB; ,, N EC'B;, where
the result is a multiset that contains each element from UC By,
if it is also in ECB;. Lastly, the RCB definition needs to be
modified to account for each reloadable block as many times
as it is present in the UCB set at each preemption point where
the reload-ability condition from Equation |3|is satisfied. This is
achieved by updating Equation 3| with m € UCB;, N ECB;.

VI. EVALUATION

In this section, we present and discuss the evaluation results
on the effectiveness of different approaches to identify schedu-
lable tasksets. We primarily compare the existing feasibility
analysis (Feasibility Analysis), proposed by Yao et al. [10], [11],
and the proposed RTA analysis (denoted as CRPD-Fixed-PP).
Additionally, we compare those two approaches with state of the
art CRPD analysis (Combined-Multiset) for fully-preemptive
scheduling, proposed by Altmeyer et al. [8], and unsafe (NO-
CRPD) which does not account for any preemption cost on
preemption points, thus resulting in an unsafe approximation.

For the evaluation, we use basic cache-set configurations
obtained with a low-level analysis tool, named LLVMTA [32].
LLVMTA uses LLVM machine intermediate representation after

H Program [ECB[UCB[Max [H Program [ECB[UCB[Max H
adpcm 256 | 230 | 103 lednum 51 11 9
bs 43 23 20 Ims 242 | 134 | 38
bsort100 57 40 30 Iudcmp 210 | 168 | 44
cnt 123 | 58 44 matmult 85 51 31
compress 247 | 150 | 63 minver 256 | 178 | 47
cover 256 | 38 15 ndes 253 | 176 | 38
cre 121 | 62 30 ns 55 37 34
edn 256 | 222 | 123 nsichneu 256 | 183 | 2
expint 117 | 47 29 prime 75 47 33
fdct 126 | 113 | 62 gsort-ex. 142 | 83 39
fftl 222 | 154 | 63 qurt 130 | 40 26
fibcall 28 16 16 select 159 | 73 55
fir 94 42 21 sqrt 53 21 12
insertsort 29 16 15 st 192 | 95 52
janne_co. 39 28 27 statemate 256 | 105 | 1
jfdctint 132 | 122 | 54 ud 194 | 151 | 39

TABLE I: Cache configurations obtained with LLVMTA [32]
analysis tool used on Milardalen benchmark programs [33].

all backend compiler passes have run. The resulting machine
program corresponds to a CFG reconstruction of a binary file.
Cache-set configurations are obtained on real-time programs
from the Milardalen benchmark [33]], given in Table [H The
obtained parameters per each program are set of evicting (ECB)
and definitely useful cache blocks (UCB) (in the table we show
the size of each set). Also, the maximum number (Max) of
definitely useful cache blocks per any preemption point of
each program is obtained. The assumed direct-mapped cache
memory consists of 256 sets with a line size of 8 bytes. For
more details about the low-level analysis refer to [34].

In all of the experiments, we generate 2000 tasksets for
each investigated parameter value. In order to include realistic
cache-set usage, each task in a taskset is randomly assigned
one of the distinct cache-set configurations presented in Table
Since the task binaries were analysed individually, they
all start at the same address (mapping to cache set 0). In
a multi-task scheduling situation, this can hardly be the
case because the ECB and UCB placement is determined
by their respective locations in memory. We took this into
account by randomly shifting the cache set indices, e.g. the
ECB in cache set i is shifted to the cache line equal to
(i 4 random(256)) modulo 256. Further task parameters were
generated using the evaluation setup proposed by Altmeyer et al.
[L8], (8] which is used in many CRPD-related papers in order
to exhaustively evaluate CRPD-based analyses. Utilisation of
each task was generated using the standardised algorithm in
real-time research — UUnifast, proposed by Bini and Butazzo
[35]. The task periods were generated according to a uniform
distribution from 5 to 500 milliseconds, representing the general
spread of periods in automotive and aerospace hard real-time
applications [18]. The worst-case execution time for each task
was computed with the following equation C; = U; x T;,
where U, represents the utilisation of 7;. Task deadlines were
implicit, meaning that D; = T;. Task priorities were assigned
according to the deadline-monotonic order. Furthermore, in
order to allow for an exhaustive evaluation, we generated other
parameters for LP-FPP task model and in different experiments
we varied different parameters. We finish this paragraph by
enlisting the default evaluation setup. The number of subjobs
for each task was randomly generated according to a uniform
distribution from the range [3,100] as this is a representative
range of non-preemptive regions used in automotive real-time
applications (where NPRs are also called runnables). The worst-
case execution time of each subjob was set to C; /I;. The default
taskset size was set to 6. For each preemption point PP; ; of a
task 7;, its useful cache blocks UCB; ;, were generated from the
UCB set, assigned to 7, from Table[[} Also, we pessimistically
assumed that each point of 7;, exhibits a maximum number
of UCBs, given in the table. Accordingly, each evicting cache
block was included at the NPRs prior and after the preemption
point where it is useful. The assumed block reload time was 8
microseconds, as given in [18].

In order to increase the exhaustiveness of the performed eval-
uation, we used the weighted schedulability measure which also
enables emulation of a 3-dimensional plot to a 2-dimensional

11

one, as proposed by Bastoni et al. [7]]. In the shown figures,
we show the weighted schedulability measure W, (p), for
schedulability test y as a function of parameter p. For each value
of p, this measure combines data for all of the tasksets generated
for each utilisation level from 0.7 to 1, with a step of 0.2.
For each value p of the selected parameter, the schedulability
measure is W, (p) = > . (Ur x By(T,p))/ > yr Ur, where
B,(T',U;) is a result (1 if schedulable, 0 otherwise) of a
schedulability test y for a taskset I' and parameter value p
(Ur is a taskset utilisation). A method producing the highest
weighted measure is the most prone to identify schedulable
tasksets.

100 ¢=

e}
(=)
T

NO-CRPD
—o— CRPD-Fixed-PP
—+-Combined-Multiset

[=)]
(=]

Schedulable tasksets (%)

40 |—o— Feasibility Analysis
;\ N\,
200 >~
oo
To- o . e
0 L L & RS -
70 75 80 85 90 95 100
Utilisation

Fig. 4: Schedulability ratio at different taskset utilisation.

+

o 2
[e

e 2
W~

Weighted measure
(=)
)

e
=

il » ESN

(=]
w2

6 7
Taskset size

Fig. 5: Weighted measure at different taskset size.

In the first experiment (FigH), we evaluated the impact
of the taskset utilisation (x-axis) on the effectiveness of the
analyses to determine the taskset schedulability (y-axis). We
notice that CRPD-Fixed-PP succeeds to identify significantly
more schedulable tasksets compared to (Feasibility Analysis)
and (Combined-Multiset), e.g. for Ur = 0.88, CRPD-Fixed-
PP identifies 48%, Combined-Multiset 34%, and Feasibility-
Analysis only 0.6% of all generated tasksets as schedulable.

In the second experiment (Fig[5), we evaluated the impact of
the taskset size (x-axis) on the effectiveness of the analyses to
determine the taskset schedulability (y-axis), with the weighted
measure. The evaluated taskset size ranges from 3 to 10.
We notice that with the increase in taskset size, all methods
deteriorate in finding schedulable tasksets. However, CRPD-
Fixed-PP deteriorates with the lowest rate, still being able to

find the largest number of schedulable tasksets compared to
Feasibility-Analysis and Combined-Multiset.

In the third experiment (Fig[f), we evaluated the impact of
the numbers of NPRs per task (x-axis) on the effectiveness of
the analyses to determine the taskset schedulability (y-axis),
with the weighted measure. In this experiment, we randomly
generated the number of NPRs from the uniform distribution in
the range [3,z] where x is a value on the x-axis from the figure.
We notice that the greater the number of NPRs, the higher the
weighted schedulability of CRPD-Fixed-PP, meaning it is more
prone to identify schedulable tasksets. This is the case because
the greater the number of NPRs, the lower the blocking from
the lower priority tasks. In contrast, with Feasibility-Analysis
it is the opposite because the greater number of NPRs, the
greater estimation of preemption cost in this case.

0.6
g
,
a 05 — - . o e e -+
8
£04 b Combined-Multiset |
2 el ——CRPD-Fixed-PP
=037 ~< —+-NO-CRPD
B ool Rl = Feasibility Analysis| |
B Te
0.1F Sm—e
—
0 1 1 1
20 40 60 80 100

Maximum number of NPRs

Fig. 6: Weighted measure at different upper bound on number
of non-preemptive regions.

T
g
205F —————- o -+ s 3
s
€04r
- Combined-Multiset
£03r —6— CRPD-Fixed-PP
) —+-NO-CRPD
g 021 —o— Feasibility Analysis
0.1}
- — - — — — e————— - ———— —o——————
0 . . .
0 64 128 192 256

Maximum number of UCBs per PP

Fig. 7: Weighted measure at different upper bound on number
of UCBs per preemption point.

In the fourth experiment (Fig[7), we evaluated the impact
of the number of UCBs per preemption point (x-axis) on
the effectiveness of the analyses to determine the taskset
schedulability (y-axis), with the weighted measure. In this
experiment, we removed the pessimistic consideration from
the default evaluation setup that all preemption points exhibit
the maximum number (Maz from Table [I) of UCBs at each
preemption point. Therefore, for each preemption point PP; j,
we randomly generated the number of UCBs from the uniform
distribution in the range [z, Maz;] where x is a value on the
x-axis from the figure, and Max; the maximum number of

12

UCBs of 7;, derived from the configuration assigned from
Table [Il In cases when x value exceeded Max;, Max; was
assigned. We notice that only CRPD-Fixed-PP is affected in
this experiment. In case when the number of UCBs per point
is derived from the range [0, Maz;] the proposed method is
more prone to identify schedulable taskset, as it accounts for
the variability of CRPD throughout the task’s execution, unlike
the other presented methods.

0.55¢

©
W

Weighted measure
o
=
W

N

CM. CFP CFEFP

o
~

Fig. 8: Weighted measure at different reload-ability conditions.

In the fifth experiment (Fig[8)), we evaluated the impact of
changing the reload-ability condition on CRPD-aware methods.
We considered two cases. Bars (C.M. — Combined-Multiset) and
(C.EP. — CRPD-Fixed-PP) represent the weighted measures
obtained with default evaluation setup, where each UCB
within the task’s execution is definitely reloadable (since ECBs
are assigned in NPRs directly preceding and succeeding the
point where the block is useful). Bar (C.EP’. — CRPD-Fixed-
PP) considers the case where UCB is reloadable only once
throughout the entire sequence of preemption points where it
is useful, thus resulting in more identified schedulable tasksets.
This is even more important for tasks with variable initialization
in the beginning, and dispatching at the task’s end.

VII. CONCLUSIONS

In this paper, we propose a cache-aware response time
analysis for tasks with non-preemptive regions (NPR) under
fixed-priority preemptive real-time scheduling. The analysis
accounts for a tighter estimation of cache-related preemption
delays thus dominating the existing feasibility analysis for the
fixed-point-based tasks. It is based on the observations that: 1)
the number of cache blocks which can be reloaded during the
execution of a task can be smaller than the number of cache
blocks which can be useful in a task, 2) a single job with NPRs
can be affected by cache-related preemption delay from the
preemptions occurring only during the maximum time duration
from the start of its first NPR, until the start of its last NPR.

We evaluated the proposed analysis by comparing its
effectiveness to identify schedulable tasksets with state of the
art feasibility analysis for tasks with non-preemptive regions
and fully-preemptive tasks. The evaluation showed that the
proposed analysis significantly improves the state of the art of
such schedulability analyses, since it accounts for the estimation
of a tighter bound on cache-related preemption delay.

ACKNOWLEDGEMENT

Foremost, we are thankful to our colleagues Sebastin Hahn,
Jan Reineke, and Darshit Shah who provided us with evaluation
data, derived from the code-level analysis of benchmark
programs. Especially, we are thankful to Sebastian Hahn who
provided additional insights and computed the cache and task
parameters using the low-level analysis tool from Saarland
University, which significantly improved the quality of this
paper. Also, we are very grateful to Davor éirkinagié who
provided us with a powerful computing system for performing
the schedulability evaluation. Lastly, we are very grateful to
all reviewers, whose comments were insightful and important
for correcting this paper.

[1]

[2]

[3]

[4]

[5]

[6]

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

G. Yao, G. Buttazzo, and M. Bertogna, “Comparative evaluation of
limited preemptive methods,” in 2010 IEEE 15th Conference on Emerging
Technologies & Factory Automation (ETFA 2010). IEEE, 2010, pp. 1-8.
G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive
scheduling for real-time systems. A survey,” industrial Informatics, IEEE
Transactions on, vol. 9, no. 1, pp. 3-15, 2013.

S. Baruah, “The limited-preemption uniprocessor scheduling of sporadic
task systems,” in /7th Euromicro Conference on Real-Time Systems
(ECRTS’05). 1EEE, 2005, pp. 137-144.

Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with pre-
emption threshold,” in Real-Time Computing Systems and Applications,
1999. RTCSA’99. Sixth International Conference on. 1EEE, 1999, pp.
328-335.

A. Burns and E. S. Son, “Preemptive priority based scheduling: An
appropriate engineering approach,” Advances in Real-Time Systems, pp.
225-248, 1994.

R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha, “Coscheduling of CPU
and I/O transactions in COTS-based embedded systems,” in Real-Time
Systems Symposium, 2008. 1EEE, 2008, pp. 221-231.

A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemption
and migration delays: Empirical approximation and impact on schedula-
bility,” Proceedings of OSPERT, pp. 33-44, 2010.

S. Altmeyer, R. I. Davis, and C. Maiza, “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-emptive
systems,” Real-Time Systems, vol. 48, no. 5, pp. 499-526, 2012.

S. Altmeyer, C. Maiza, and J. Reineke, “Resilience analysis: tightening
the CRPD bound for set-associative caches,” in ACM Sigplan Notices,
vol. 45, no. 4. ACM, 2010, pp. 153-162.

G. Yao, G. Buttazzo, and M. Bertogna, “Feasibility analysis under
fixed priority scheduling with fixed preemption points,” in 2070 IEEE
16th International Conference on Embedded and Real-Time Computing
Systems and Applications. 1EEE, 2010, pp. 71-80.

, “Feasibility analysis under fixed priority scheduling with limited
preemptions,” Real-Time Systems, vol. 47, no. 3, pp. 198-223, 2011.
A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Communi-
cation centric design in complex automotive embedded systems,” in 29th
Euromicro Conference on Real-Time Systems (ECRTS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

M. Becker, N. Khalilzad, R. J. Bril, and T. Nolte, “Extended support for
limited preemption fixed priority scheduling for osek/autosar-compliant
operating systems,” in /0th IEEE International Symposium on Industrial
Embedded Systems (SIES). 1EEE, 2015, pp. 1-11.

L. Hatvani, R. J. Bril, and S. Altmeyer, “Schedulability using native
non-preemptive groups on an autosar/osek platform with caches,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. 1IEEE, 2017, pp. 244-249.

C.-G. Lee, J. Han, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling,” IEEE Transactions on Computers,
vol. 47, no. 6, pp. 700-713, 1998.

S. Altmeyer and C. Burguiere, “A new notion of useful cache block to
improve the bounds of cache-related preemption delay,” in Real-Time
Systems, 2009. ECRTS’09. 21st Euromicro Conference on. 1EEE, 2009,
pp. 109-118.

13

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

Y. Tan and V. Mooney, “Timing analysis for preemptive multitasking real-
time systems with caches,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 6, no. 1, p. 7, 2007.

S. Altmeyer, R. I. Davis, and C. Maiza, “Cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive systems,”
in 2011 IEEE 32nd Real-Time Systems Symposium. 1EEE, 2011, pp.
261-271.

H. Tomiyama and N. D. Dutt, “Program path analysis to bound cache-
related preemption delay in preemptive real-time systems,” in Proceedings
of the eighth international workshop on Hardware/software codesign.
ACM, 2000, pp. 67-71.

J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings,
“Adding instruction cache effect to schedulability analysis of preemptive
real-time systems,” in Real-Time Technology and Applications Symposium,
1996. Proceedings., 1996 IEEE. 1EEE, 1996, pp. 204-212.

H. Ramaprasad and F. Mueller, “Tightening the bounds on feasible
preemption points,” in 2006 27th IEEE International Real-Time Systems
Symposium (RTSS’06). 1EEE, 2006, pp. 212-224.

——, “Bounding worst-case response time for tasks with non-preemptive
regions,” in 2008 IEEE Real-Time and Embedded Technology and
Applications Symposium. 1EEE, 2008, pp. 58-67.

R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption,” Real-Time Systems, vol. 42, no. 1-3, pp. 63—119, 2009.
M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo,
“Optimal selection of preemption points to minimize preemption overhead,”
in Real-Time Systems (ECRTS), 2011 23rd Euromicro Conference on.
IEEE, 2011, pp. 217-227.

B. Peng, N. Fisher, and M. Bertogna, “Explicit preemption placement
for real-time conditional code,” in Real-Time Systems (ECRTS), 2014
26th Euromicro Conference on. 1EEE, 2014, pp. 177-188.

J. Cavicchio, C. Tessler, and N. Fisher, “Minimizing cache overhead via
loaded cache blocks and preemption placement,” in Real-Time Systems
(ECRTS), 2015 27th Euromicro Conference on. 1EEE, 2015, pp. 163—
173.

F. Markovic, J. Carlson, and R. Dobrin, “Tightening the bounds on cache-
related preemption delay in fixed preemption point scheduling,” in 17th
International Workshop on Worst-Case Execution Time Analysis (WCET
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

F. Markovi¢, J. Carlson, and R. Dobrin, “Improved cache-related
preemption delay estimation for fixed preemption point scheduling,” in
Ada-Europe International Conference on Reliable Software Technologies.
Springer, 2018, pp. 87-101.

G. Buttazzo, Hard real-time computing systems: predictable scheduling
algorithms and applications. Springer Science & Business Media, 2011,
vol. 24.

R. J. Bril, W. F. Verhaegh, and J. J. Lukkien, “Exact worst-case
response times of real-time tasks under fixed-priority scheduling with
deferred preemption,” in Proc. Work-in-Progress (WiP) session of the
16th Euromicro Conference on Real-Time Systems (ECRTS), Technical
Report from the University of Nebraska-Lincoln, Department of Computer
Science and Engineering (TR-UNL-CSE-2004-0010), 2004, pp. 57-60.
E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic fixed
priority systems,” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1462-1473, 2004.

S. Hahn, M. Jacobs, and J. Reineke, “Enabling compositionality for
multicore timing analysis,” in Proceedings of the 24th international
conference on real-time networks and systems. ACM, 2016, pp. 299—
308.

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mélardalen wcet
benchmarks: Past, present and future,” in 10th International Workshop on
Worst-Case Execution Time Analysis (WCET 2010). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2010.

D. Shah, S. Hahn, and J. Reineke, “Experimental evaluation of cache-
related preemption delay aware timing analysis,” in /8th International
Workshop on Worst-Case Execution Time Analysis (WCET 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129-154, 2005.

	Introduction
	System Model and notation
	Related Work
	Overview of the feasibility analysis for tasks with non-preemptive regions
	Self-Pushing phenomenon
	Feasibility analysis

	Limitations of the existing approach

	Motivating Examples
	Cache-aware response time analysis
	Maximum lower priority blocking
	CRPD related computations
	Reloadable cache blocks
	CRPD of a single job of i within the time interval t
	CRPD on all jobs of i released within time interval t
	Maximum time interval Ii

	Latest start time, finish time, and response time
	Schedulability analysis

	Set-associative LRU caches

	Evaluation
	Conclusions
	References

