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deriving the exact distribution?
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Investigated scenario: Analysis over 100 periods of the lowest-priority task.
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EVALUATION
What are the benefits of using the proposed approach over the most efficient analysis (circular convolution) for 

deriving the exact distribution?

Computation Time Memory Footprint Approximation Accuracy

Comparison point: Taskset size = 50.

Berry-Essen (BE): 0.005 seconds
Circular Convolution (CC): 46 seconds

Computation time is significantly 
improved over the circular 
convolution approach.
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EVALUATION
Memory footprint is significantly improved over the circular convolution approach.

Investigated scenario: Analysis over 100 periods of the lowest-priority task.

Variable parameter: Taskset size, from 5 to 50 (step 5).

Comparison point: Taskset size = 50.

1157.8 MB
Circular convolution

0.029 MB
Berry-Esseen approach

*Lower is better

Memory Footprint
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EVALUATION
What are the benefits of using the proposed approach over the most efficient analysis (circular convolution) for 

deriving the exact distribution?

Computation Time Memory Footprint Approximation Accuracy

Comparison point: Taskset size = 50. Comparison point: Taskset size = 50.

BE: 0.029 MB
CC: 1157.8 MBCircular Convolution (CC): 46 seconds

Berry-Essen (BE): 0.005 seconds

Computation time is significantly 
improved over the circular 
convolution approach.

Memory footprint is significantly 
improved over the circular 
convolution approach.
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Variable parameter: Time interval under the analysis, equal to the multiplier of the period of the lowest priority task.

*Closer to the red value is better
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actual value.
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Investigated scenario: Quantile analysis over increasingly longer time intervals.

Variable parameter: Time interval under the analysis, equal to the multiplier of the period of the lowest priority task.

*Closer to the red value is better

Comparison point 1: Time interval = Period of the lowest-priority task.

Comparison point 2: Time interval = 50 periods of the lowest-priority task.

3% off the 
actual value. 0,04% off the 

actual value.

Approximation Accuracy
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EVALUATION
Accuracy is improving with the increase in the problem size.
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Variable parameter: Time interval under the analysis, equal to the multiplier of the period of the lowest priority task.

*Closer to the red value is better
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EVALUATION
What are the benefits of using the proposed approach over the most efficient analysis (circular convolution) for 

deriving the exact distribution?

Computation Time Memory Footprint Approximation Accuracy

Comparison point: Taskset size = 50.

Computation time is significantly 
improved over the circular 
convolution approach.

Comparison point: Taskset size = 50.

Memory footprint is significantly 
improved over the circular 
convolution approach.

Comparison point 1: one period

BE: 3% off the actual value.

BE: 0.029 MB
CC: 1157.8 MBCircular Convolution (CC): 46 seconds

Berry-Essen (BE): 0.005 seconds
Comparison point 2: 50 periods

BE: 0.04% off the actual value.

Accuracy is improving with the 
increase in the problem size. 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Computation time is significantly 
improved over the circular 
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