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IN MORE DETAIL

The Cumulative Distribution Function (CDF) of the sum of discrete independent random variables converges to the
CDF of Normal distribution (known as the Lyapunov Central Limit Theorem).
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Variable parameter: Taskset size, from 5 to 50 (step 5).

Comparison point: Taskset size = 50.
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Investigated scenario: Analysis over 100 periods of the lowest-priority task.
Variable parameter: Taskset size, from 5 to 50 (step 5).

Comparison point: Taskset size = 50.

*Lower is better
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Investigated scenario: Analysis over 100 periods of the lowest-priority task.

EVA I.UATI 0 N Memory Footprint

Taskset size

Variable parameter: Taskset size, from 5 to 50 (step 5).

Comparison point: Taskset size = 50.
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*Lower is better
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Investigated scenario: Analysis over 100 periods of the lowest-priority task.

EVA I.UATI 0 N Memory Footprint

Memory footprint is significantly improved over the circular convolution approach.

Taskset size

Variable parameter: Taskset size, from 5 to 50 (step 5).

Comparison point: Taskset size = 50.
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1157.8 MB
Circular convolution

0.029 MB
Berry-Esseen approach

*Lower is better
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EVALUATION

What are the benefits of using the proposed approach over the most efficient analysis (circular convolution) for
deriving the exact distribution?
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Taskset size

Comparison point: Taskset size = 50.

Taskset size

: Comparison point: Taskset size = 50.

Circular Convolution (CC): 46 secondsé CC: 1157.8 MB

Berry-Essen (BE): 0.005 seconds

BE: 0.029 MB

Computation time is significantly
improved over the circular
convolution approach.

: |Memory footprint is significantly
: [improved over the circular
: [convolution approach.
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Memory Footprint
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Investigated scenario: Quantile analysis over increasingly longer time intervals.
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EVA I.UATI 0 N Approximation Accuracy

Investigated scenario: Quantile analysis over increasingly longer time intervals.

Variable parameter: Time interval under the analysis, equal to the multiplier of the period of the lowest priority task.
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EVA I.UATI 0 N Approximation Accuracy
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*Closer to the red value is better
Investigated scenario: Quantile analysis over increasingly longer time intervals.

Variable parameter: Time interval under the analysis, equal to the multiplier of the period of the lowest priority task.
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*Closer to the red value is better
Investigated scenario: Quantile analysis over increasingly longer time intervals.

Variable parameter: Time interval under the analysis, equal to the multiplier of the period of the lowest priority task.

Comparison point 1: Time interval = Period of the lowest-priority task.
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Investigated scenario: Quantile analysis over increasingly longer time intervals.

Variable parameter: Timeinterval under the analysis, equal to the multiplier of the period of the lowest priority task.

Comparison point 1: Time interval = Period of the lowest-priority task.
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45

o0

*Closer to the red value is better

Variable parameter: Timeinterval under the analysis, equal to the multiplier of the period of the lowest priority task.

Comparison point 1: Time interval = Period of the lowest-priority task.
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Investigated scenario: Quantile analysis over increasingly longer time intervals.
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*Closer to the red value is better

Variable parameter: Timeinterval under the analysis, equal to the multiplier of the period of the lowest priority task.

Comparison point 1: Time interval = Period of the lowest-priority task.

Comparison point 2: Time interval = 50 periods of the lowest-priority task.
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Investigated scenario: Quantile analysis over increasingly longer time intervals.
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*Closer to the red value is better

Variable parameter: Timeinterval under the analysis, equal to the multiplier of the period of the lowest priority task.

Comparison point 1: Time interval = Period of the lowest-priority task.

Comparison point 2: Time interval = 50 periods of the lowest-priority task.

MDU and MPI-SWS

Filip Markovi¢, Thomas Nolte, and Alessandro V. Papadopoulos



Analytical Approximations in Probabilistic Analysis of RTSs

EVA I.UATI 0 N Approximation Accuracy

=, 104 ® 3% off the (b) Taskset size of 5| |

>

% 102 | ° actual value. 11 0,04% off the
5 actual value.
S 100

8

< 98|, ——— CC «vunss CLT-based |-

s ! - = = upper - — - down

2 96 | | I | | | | | |

0 s 10 15 20 25 30 35 40 45 50
Multiplier of T

*Closer to the red value is better
Investigated scenario: Quantile analysis over increasingly longer time intervals.

Variable parameter: Timeinterval under the analysis, equal to the multiplier of the period of the lowest priority task.
Comparison point 1: Time interval = Period of the lowest-priority task.

Comparison point 2: Time interval = 50 periods of the lowest-priority task.
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Accuracy is improving with the increase in the problem size.

. actual value.
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Investigated scenario: Quantile analysis over increasingly longer time intervals.
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*Closer to the red value is better

Variable parameter: Timeinterval under the analysis, equal to the multiplier of the period of the lowest priority task.

Comparison point 1: Time interval = Period of the lowest-priority task.

Comparison point 2: Time interval = 50 periods of the lowest-priority task.
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EVALUATION

What are the benefits of using the proposed approach over the most efficient analysis (circular convolution) for
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Taskset size

Comparison point: Taskset size = 50.

Circular Convolution (CC): 46 secondsé
Berry-Essen (BE): 0.005 seconds :

Computation time is significantly
improved over the circular
convolution approach.

deriving the exact distribution?
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: Comparison point: Taskset size = 50.

CC:1157.8 MB

: BE: 0.029 MB

convolution approach.

Memory footprint is significantly
improved over the circular
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Comparison point 1: one period
BE: 3% off the actual value.
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Comparison point 2: 50 periods
BE: 0.04% off the actual value.

Accuracy is improving with the

increase in the problem size.
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Approximation Accuracy
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EVALUATION

What are the benefits of using the proposed approach over the most efficient analysis (circular convolution) for
deriving the exact distribution?

Computation time is significantly Memory footprint is significantly Accuracy is improving with the
improved over the circular : |[improved over the circular : |increase in the problem size.
convolution approach. : |convolution approach. '

Computation Time Memory Footprint Approximation Accuracy
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